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Abstract

The Cross Appalachian Tracer Experiment (CAPTEX) data collected from
six controlled releases are used to quantitatively evaluate a HYSPLIT inverse
system which is based on variational data assimilation and a Lagrangian
dispersion transfer coefficient matrix (TCM). Inverse modeling tests with
various observational uncertainties show that using concentration differences
results in severe underestimation while using logarithm concentrations dif-
ferences results in overestimation of the release rate. The introduction of
model uncertainty terms improves results for both choices of the metric vari-
ables in the cost function. To avoid spurious minimal source term solutions
when using logarithm concentrations as metric variables the cost function is
normalized by the weighting term sum. Such normalization is effective in
eliminating the spurious solutions and it also helps to improve release esti-
mates for both choices of the metric variables. The tests with many combina-
tions of uncertainty parameters show that having logarithm concentrations
as metric variables generally yield better results than those having concentra-
tions as metric variables and the estimates are quite robust for a reasonable
range of model uncertainty parameters. Such conclusion is further confirmed
with nine ensemble runs in which meteorological fields were generated with
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varying planetary boundary layer (PBL) schemes using a different version
of the Weather Research and Forecasting (WRF) Model. In addition, the
emission estimates using the median transfer coefficients of the nine TCMs
are compared with the medians of the nine estimates using the nine simula-
tions individually for various combinations of model uncertainty parameters.
It is found that the two approaches give similar results for both choices of
metric variables with 12 model uncertainty parameter combinations. The
relative differences are not greater than 3.1% for logarithm concentration
metric variable and not greater than 10.8% for concentration metric vari-
ables. With a fixed set of observational and model uncertainty parameters,
the inverse method with logarithm concentration as metric variable is then
applied to other releases and the largest relative error is 53.3% among the
six releases. The system is later tested for its capability to locate a single
source location as well as its source strength. The location and strength that
result in the best match between the predicted and the observed concentra-
tions are considered as the best estimates. The estimated location is close
to the actual release site for release 2 of which the HYSPLIT has the best
performance with the exact source terms. The estimated release rates are
mostly not as good as the cases with the exact release site assumed known,
but they are within a factor of 3 for all releases.

Key words: HYSPLIT, Lagrangian dispersion model, source term
estimation, transfer coefficient matrix (TCM), ensemble

1. Introduction1

The transport and dispersion of gaseous and particulate pollutants are2

often simulated to generate pollution forecasts for emergency responses or3

produce comprehensive analyzes of the past for better understanding of the4

particular events. Lagrangian particle dispersion models are particularly5

suited to provide plume products associated with emergency response sce-6

narios. However, the exact air pollutants source terms are rarely provided in7

most scenarios. For instance, the smoke forecasts over the continental U.S.8

operated by the National Oceanic and Atmospheric Administration (NOAA)9

using the HYSPLIT model [16, 44] in support of the National Air Quality10

Forecast Capability (NAQFC) relies on the outdated fuel loadings data and11

a series of assumptions related to smoke release heights and strength approx-12

imation [40].13
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Observed concentration, deposition, or other functions of the atmospheric14

pollutants such as aerosol optical thickness measured by satellite instruments15

can be used to estimate some combination of source location, strength, and16

temporal evolution using various source term estimation (STE) methods17

[3, 26]. Among the applications, the recent Fukushima Dai-ichi Nuclear18

Power Plant accidents saw the most implementations of the STE methods to19

estimate the radionuclide releases. The STE methods range from simple com-20

parisons between model outputs and measurements [e.g. 12, 29, 46, 24, 30,21

36, 28, 1] to those sophisticated ones using various dispersion models and in-22

verse modeling schemes [e.g. 45, 53, 41, 52, 10]. Another active field for STE23

applications is the estimation of the volcanic ash emissions. Many attempts24

have been made for several major volcano eruptions [49, 39, 50, 51, 9].25

While there are many STE methods applied to reconstruct the emission26

terms, it is still a state of art. Two popular advanced inverse modeling27

approaches are cost-function-based optimization methods and those based28

on Bayesian inference. For most applications, it is very difficult to effectively29

evaluate the results without knowing the actual sources. Chai et al. [10]30

generated pseudo observations using the same dispersion model in its initial31

inverse experiment tests, which are often called “twin experiments”. Such32

tests can have observation errors realistically added [e.g. 10], but it is non-33

trivial to represent the model errors incurred by other model parameters34

such as the uncertainties of the meteorological field. One way to objectively35

evaluate the inverse modeling results is comparing the predictions with the36

estimated source terms against the independent observations or withheld37

data. However, such indirect comparisons still cannot provide quantitative38

error statistics for the source terms.39

There are tracer experiments conducted to study the atmospheric trans-40

port and dispersion where controlled releases were well-quantified and com-41

prehensive measurements were made subsequently over an extended area [e.g.42

15, 48]. Such data sets have been extensively used to evaluate the dispersion43

models [e.g. 19, 22, 23]. The known source terms can also provide a unique44

opportunity to evaluate the estimated emission sources by the STE methods.45

For instance, the European Tracer Experiment (ETEX) data set was used46

to study the STE methods based on the principle of maximum entropy and47

a least squares cost function [4, 5, 6]. Singh and Rani [42] and Singh et al.48

[43] used measurements from a recent dispersion experiment (Fusion Field49

Trials 2007) data to evaluate a least-squares technique for identification of a50

point release. However, such formal evaluation of the STE methods is very51
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limited.52

HYSPLIT inverse system based on 4D-Var data assimilation and a trans-53

fer coefficient matrix (TCM) was developed and applied to estimate cesium-54

137 source from the Fukushima nuclear accident using air concentration mea-55

surements [10]. The system was further developed to solve the effective56

volcanic ash release rates as a function of time and height by assimilating57

satellite mass loadings and ash cloud top heights. Chai et al. [9] tested and58

evaluated the system using the Kasatochi eruption in 2008 as an example.59

In this study, the Cross Appalachian Tracer Experiment (CAPTEX) tracer60

experiment data are used to evaluate a HYSPLIT inverse modeling system in61

its ability to estimate the source strength and its release location. The paper62

is organized as follows. Section 2 describes the CAPTEX experiment, HYS-63

PLIT model configuration, and the source term inversion method. Section 364

presents emission inversion results and a summary is given in Section 4.65

2. Method66

2.1. CAPTEX experiment67

The CAPTEX experiment consisted of seven near-surface releases of the68

inert tracer perfluro-monomethylcyclohexane (PMCH) from Dayton, Ohio,69

U.S. and Sudbury, Ontario, Canada during September and October 198370

[14]. Table 1 lists the locations, time, released tracer amounts, and mea-71

surement counts of all seven releases. Samples were collected at 84 different72

measurement sites distributed from 300 to 1100 km downwind of the emis-73

sion source, as either 3- or 6-hour averages up to 60 hours after each release.74

Figure 1 shows the distribution of two source locations and all measurement75

sites during the CAPTEX period. Since there were few measurements above76

twice background values for release 6 as the plume being very narrow, it will77

be excluded from the testing as in the earlier studies using CAPTEX data78

[e.g. 23, 35].79

2.2. HYSPLIT80

In this study, the tracer transport and dispersion are modeled using the81

HYSPLIT model in its particle mode in which three-dimensional Lagrangian82

particles released from the source location passively follow the wind field [16,83

17, 44]. A particle release rate of 50,000 per hour is used for all calculations.84

Random velocity components based on local stability conditions are added85

to the mean advection velocity in the three wind component directions. The86
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Figure 1: Distribution of two CAPTEX source locations, Dayton, Ohio, U.S. shown
as a red diamond, and Sudbury, Ontario, Canada shown as a green cross, and the 84
measurement sites.
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Table 1: The location, time, released tracer amounts, and measurement counts (Mobs) of
each CAPTEX release from Dayton, Ohio, U.S. and Sudbury, Ontario, Canada during
September and October 1983.

# Site (latitude, longitude) Release time Amount Mobs

1 Dayton (39.80◦, -84.05◦) 1700-2000Z, Sep. 18, 1983 208 kg 395
2 Dayton (39.90◦, -84.22◦) 1705-2005Z, Sep. 25, 1983 201 kg 400
3 Dayton (39.90◦, -84.22◦) 1900-2200Z, Oct. 02, 1983 201 kg 404
4 Dayton (39.90◦, -84.22◦) 1600-1900Z, Oct. 14, 1983 199 kg 367
5 Sudbury (46.62◦, -80.78◦) 0345-0645Z, Oct. 26, 1983 180 kg 357
6 Dayton (39.90◦, -84.22◦) 1530-1600Z, Oct. 28, 1983 32 kg -
7 Sudbury (46.62◦, -80.78◦) 0600-0900Z, Oct. 29, 1983 183 kg 358

meteorological data used to drive the HYSPLIT are identical to those time-87

averaged Advanced Research WRF model (ARW, version 3.2.1) simulation88

at 10-km resolution used by Hegarty et al. [23]. The 10-km run was nested89

inside a larger domain at 30-km resolution, over which the simulation was90

started using the North American Regional Reanalysis at 32-km [32]. In91

the WRF simulations, 3D grid nudging of winds was applied in the free92

troposphere and within the planetary boundary layer (PBL). There are 4393

vertical layers with the lowest one being approximately 33 m thick. Tracer94

concentrations are computed over each grid cell by summing the mass of95

all particles in the cell and dividing the result by the cell’s volume. In this96

study, the concentration grid cells have a 0.25o resolution in both latitude97

and longitude directions and have a height of 100 m starting from surface.98

To avoid running the HYSPLIT modeling repeatedly, a transfer coefficient99

matrix (TCM) is generated for each inverse modeling problem, similar to the100

previous HYSPLIT inverse modeling studies [10, 9]. As described in Draxler101

and Rolph [18], independent simulations are performed with a unit emission102

rate from each source location and pre-defined time segment. Each release103

scenario is simply a linear combination of the unit emission runs.104

2.3. Emission Inversion105

Similar to [10], the unknown releases can be solved by minimizing a cost106

functional that integrates the differences between model predictions and ob-107

servations, deviations of the final solution from the first guess (a priori), as108

6



well as other relevant information written into penalty terms [13]. For the109

current application, the cost functional F is defined as,110

F =
1

2

M∑

i=1

N∑

j=1

(qij − qb
ij)

2

σ2
ij

+
1

2

M∑

m=1

(ch
m − co

m)2

ǫ2
m

+
csm

2
·

N−1∑

i=2

[
(qi−1,j − qb

i−1,j) − 2 · (qij − qb
ij) + (qi+1,j − qb

i+1,j)

qc

]2 (1)

where qij is the discretized source term at hour i and location j for which111

an independent HYSPLIT simulation has been run and recorded in a TCM.112

qb
ij is the first guess or a priori estimate and σ2

ij is the corresponding error113

variance. Note that all tracer sources in this study were at ground level114

and the release heights in the HYSPLIT were set as 10 m for all the fol-115

lowing test cases. We also assume the uncertainties of the release at each116

time-location are independent of each other so that only the diagonal term117

of the typical a priori error variance σ2
ij appears in Equation 1. ch and co

118

denote HYSPLIT-predicted and measured concentrations, respectively. The119

observational errors ǫ2
m are assumed to be uncorrelated. The term “obser-120

vational errors” does not limit ǫ2
m to include the observational uncertainties121

only. As the term ǫ2
m is essentially used to weight (ch

m − co
m)2 terms, the122

uncertainties of the model predictions and the representative errors should123

all be considered along with the observational uncertainties. This will be fur-124

ther discussed in Section 3.2. The last term is a smoothness penalty and it125

helps to make the modified minimization problem better conditioned [31]. qc126

is a scale constant and may be combined with csm to adjust the smoothness127

term. In this study, the smoothness penalty is turned off by setting csm as128

zero. A large-scale bound-constrained limited-memory quasi-Newton code,129

L-BFGS-B [54] is used to minimize the cost functional F defined in Equa-130

tion 1 when multiple parameters need to be determined, but it is not needed131

here. As shown by Chai et al. [10], the control and metric variables can be132

changed to ln(qij) and ln(ch
m) − ln(co

m). Both choices of metric variable will133

be tested here.134
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3. Results135

3.1. Recovering emission strength without model uncertainty136

As an initial test, the exact release location and time are both assumed137

known and the only unknown variable left to be determined is the release138

rate, or the total release amount. For this type of one-dimensional prob-139

lem, an optimal emission strength can be easily found without having to use140

sophisticated minimization routines. For instance, the F may be directly cal-141

culated for a number of emission strength values and the resulting F = F(q)142

plot will reveal the optimal q strength that is associated with the minimal F .143

Note that such an optimal solution not only depends on the chosen param-144

eters in Equation 1, but also highly depends on the HYSPLIT model setup145

and the meteorological fields.146

Both Hegarty et al. [23] and Ngan et al. [35] showed that the HYSPLIT147

dispersion model performed better for Release 2 than the other releases. Thus148

Release 2 is initially chosen to perform a series of sensitivity tests. Assuming149

no prior knowledge of the emission strength, the first guess is given as qb = 0,150

and the σ = 104 kg/hr is assumed. Sensitivity tests show that when qb is151

changed to 100 kg/hr the emission strength estimates are nearly unchanged152

with the same or larger σ. Note that 3.4 fl/l has been subtracted from153

all CAPTEX measurements to remove background and “noise” in sampling154

where the ambient background concentration is constant at 3.0 fl/l [20]. At155

ground level, 1 fl/l is equivalent to 15.6 pg/m3. Duplicate sample analyses156

showed that the majority data has a mean standard deviation estimated as157

10.8% and contaminated samples may have standard deviation as large as158

65% [20].159

Firstly, the observational uncertainties are formulated to include a frac-160

tional component f o
× co and an additive part ao. No model uncertainties161

are considered to contribute to ǫ. Table 2 lists the emission strength q that162

generates the minimal cost function for a series of f o and ao combinations,163

where f o ranges from 10% to 50%, and ao taking 10, 20, and 50 pg/m3. All164

the emission strength values obtained are significantly lower than the actual165

release of 67 kg/hr. It shows that a larger f o value tends to have a smaller166

q estimate, but a larger ao results in a larger q. The significant underestima-167

tion of the release strength is caused by the implicit assumption of a perfect168

model when ǫ does not include the model uncertainties. Figure 2 shows the169

comparison between the predicted and measured concentrations when the170

actual release rate of 67 kg/hr is applied. It shows that large discrepancies171
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still exist even when the exact releases are known and used in the simulation.172

For the measured zero concentrations, most of the predicted values are non-173

zero and the model predictions can be above 1000 pm/m3. As ǫm = ao for174

these zero concentrations, (ch
m−co

m)2

ǫ2m
will dominate the cost function when ao

175

is not large enough. This explains that the underestimation is not as severe176

for ao =50 pg/m3 as that for ao =10 pg/m3. While ǫ do not change with f o
177

for the zero concentrations, smaller f o values help increase the weighting of178

the terms (ch
m−co

m)2

ǫ2m
associated with large measured concentrations. So, the179

estimated emission strength when f o = 10% is better than when f o = 50%.180

As stated in Chai et al. [10], the metric variable in Equation 1 can be181

changed to ln(c), i.e. replacing (ch
m − co

m) with ln(ch
m) − ln(co

m). A constant182

0.001 pg/m3 is added to both ch
m and co

m to allow the logarithm operation183

for zero concentrations. In such a case, ǫ
ln(c)
m can be calculated as184

ǫln(c)
m = ln(1 + f o +

ao

co
m

) (2)

Note that a constant small number 0.001 pg/m3 is also added to co
m in the185

second term to avoid dividing by zero. The ao
m

co
m

term in Equation 2 makes186

ǫ
ln(c)
m larger for measured low concentrations than those measured high con-187

centrations, thus makes the measured zero concentrations have little effect188

in the final emission strength estimates. Table 3 shows that the emission189

strengths are overestimated, but are within a factor of 2 over the actual re-190

lease of 67 kg/hr, for all f o and ao combinations. The similar trends of how191

q changes with f o and ao are also observed here, i.e., a larger ao or a smaller192

f o tends to have a larger q estimate.193

Table 2: Emission strength of release 2 that minimizes F for different observational errors,
defined as ǫ = fo

× co + ao. Concentrations are used as the metric variables.

Emission (kg/hr) ao =10 pg/m3 ao =20 pg/m3 ao =50 pg/m3

f o = 10% 7.1 11.1 17.4
f o = 20% 4.1 7.1 12.6
f o = 30% 2.9 5.2 10.0
f o = 50% 1.8 3.4 7.1

While using logarithm concentration as metric variables yield better emis-194

sion estimates than using the concentrations, the results in Table 3 are ap-195
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Figure 2: Comparison between the predicted and measured concentrations for Release
2 during the CAPTEX experiment. In the HYSPLIT simulation, at the exact release
location, an emission rate of 67 kg/hr was applied from 17Z to 20Z on September 25,
1983. A constant 1 pg/m3 is added to both predicted and measured concentrations to
allow logarithm calculation.

10



Table 3: Emission strength of release 2 that minimizes F for different observational errors,
defined as ǫ = fo

× cm + ao. Logarithm concentration is chosen as the metric variable, i.e.
(ch

m
− co

m
) in Equation 1 is replaced with ln(ch

m
) − ln(co

m
).

Emission (kg/hr) ao =10 pg/m3 ao =20 pg/m3 ao =50 pg/m3

f o = 10% 115.2 119.8 124.7
f o = 20% 106.3 112.9 119.8
f o = 30% 101.2 108.5 116.3
f o = 50% 94.4 101.2 109.6

parently systematically overestimated, comparing to the systematically un-196

derestimated results in Table 2. In addition, the f o and ao combinations197

associated with the best emission estimates in Tables 2 and 3 appear to go198

in opposite directions.199

3.2. Recovering emission strength with model uncertainty200

To consider the model uncertainties in a simplified way, ǫ2 will be formu-201

lated as202

ǫ2
m = (f o

× co
m + ao)2 + (fh

× ch
m + ah)2 (3)

As ao and ah affect the ǫ2 in a similar way, the representative errors caused203

by comparing the measurements with the predicted concentrations averaged204

in a grid can be included in either (ah)2 or (ao)2.205

With logarithm concentration as the metric variable, (ǫ
ln(c)
m )2 is comprised206

of two parts, as207

(ǫln(c)
m )2 = [ln(1 + f o +

ao

co
m

)]2 + [ln(1 + fh +
ah

ch
m

)]2 (4)

Note that a constant small number 0.001 pg/m3 is added to denominators208

co
m and ch

m to avoid dividing by zero.209

Using concentrations and logarithm concentration as metric variable, re-210

spectively, Tables 4 and 5 show the emission strength estimates with different211

fh and ah, while keeping f o = 20%, ao =20 pg/m3. It should be noted that212

the model uncertainties are not equivalent to model errors. Although disper-213

sion model simulations can have large errors due to various reasons including214

the source term uncertainties, the model uncertainties are used to indicate215

that the model is not perfect even with the “optimal” model parameters.216
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Similar to weak constraint applied in operational 4D-Var data assimilation217

systems [55, 47], introducing model uncertainties is mainly intended to relax218

the model constraint for imperfect models. Here the fh and ah parame-219

ters are given similar ranges as those given to the observational uncertainty220

parameters.221

When concentrations were used as metric variables, the emission strength222

estimates with model uncertainties considered were improved over those223

without model uncertainties. The estimates of emission strength generally224

increases with the model uncertainty, either through ah or fh except for225

fh = 50%, when the q estimates slowly decreases with ah. The relation-226

ships between ah versus q in Table 4 and ao versus q in Table 2 are similar.227

When fh = 0%, ah = 10, 20, and 50 pg/m3 while ao=20 pg/m3, the q esti-228

mates, 7.7, 9.1, and 13.6 kg/hr, are inline with the results shown in Table 2,229

where q = 7.1 kg/hr for ao=20 pg/m3 and q = 12.6 kg/hr for ao=50 pg/m3.230

However, the trend of how q estimates change with fh is opposite to how q231

estimates change with f o. Table 4 shows that the emission strength increases232

with the model uncertainty factor fh. With fh = 20%, the release estimates233

of 48.5, 50.4, and 53.5 kg/hr are all within 30% of the actual release rate of234

67 kg/hr. Instead of underestimation shown in Table 2, the release estimates235

are actually overestimated when fh = 50% is assumed.236

With logarithm concentration as the metric variable, larger ah or fh re-237

sults in slightly smaller q estimates. While how q estimates change with fh238

is similar as how they change with fa, how q estimates change with ah is239

opposite to how q estimates change with ao. Equation 4 shows that fo and240

fh affect (ǫ
ln(c)
m )2 in a simple monotonic way, while the effect of ah

m is com-241

plicated as it is divided by the ch
m value that varies with the source terms.242

Table 5 shows that the emission strength are no longer overestimated as243

those in Table 3. In fact, all cases show slight to moderate underestimation,244

with the worst results being q = 42.6 kg/hr when fh = 50% and ah =50245

pg/m3. It should be noted that when concentrations were used as metric246

variables, fh = 50% and ah =50 pg/m3 yield the best release estimate of247

66.6 kg/hr. Another aspect of using logarithm concentrations as metric248

variables is that the range of the release estimates are not as large as those249

using concentrations as metric variables.250

3.3. Cost function normalization251

Without model uncertainties, the weighting terms for each model-observation252

pair do not change with emission estimates. When ǫ2
m and (ǫ

ln(c)
m )2 are for-253
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Table 4: Emission strength of release 2 that minimizes F for different fh and ah. Concen-
tration is taken as the metric variable. ǫ2 = (fo

× co + ao)2 + (fh
× ch + ah)2. fo = 20%,

ao =20 pg/m3.

Emission (kg/hr) ah =10 pg/m3 ah =20 pg/m3 ah =50 pg/m3

fh = 0 7.7 9.1 13.6
fh = 10% 15.9 22.1 32.9
fh = 20% 48.5 50.4 53.5
fh = 50% 114.0 111.8 104.3

Table 5: Emission strength of release 2 that minimizes F for different fh and ah. Loga-
rithm concentration is taken as the metric variable. ǫ2 = (fo

× co +ao)2 +(fh
× ch +ah)2.

fo = 20%, ao =20 pg/m3.

Emission (kg/hr) ah =10 pg/m3 ah =20 pg/m3 ah =50 pg/m3

fh = 0 64.7 58.5 53.5
fh = 10% 61.5 55.7 49.4
fh = 20% 58.5 53.0 46.6
fh = 50% 55.1 49.4 42.6

mulated as in Equations 3 and 4, respectively, they change with emission254

estimates. When logarithm concentrations are used as metric variables, com-255

plication is found to be associated with the fact the weighting terms vary256

with emission estimates. Figure 3 shows the cost function as a function257

of source strength when (ǫ
ln(c)
m )2 is defined as in Equation 4, with fh = 0,258

ah =50 pg/m3, fo = 10%, ao =20 pg/m3. Before introducing cost function259

normalization, a global minimal cost function appears when release strength260

approaches zero while a local minimal cost function exists at 56.8 kg/hr.261

Several such situations were found when ah = 50 pg/m3 and when fh is 0262

or 10%, while both fo and ao are relatively small. The smaller cost function263

when release strength approaches zero is due to the increasing (ǫ
ln(c)
m )2 in264

Equation 4 as ch
m gets smaller. While the model-observation differences are265

not smaller for lower release strength, the drastic change of (ǫ
ln(c)
m )2 when266

ah = 50 pg/m3 and fh is 0 or 10% results in smaller cost function with de-267

creasing source strength. To avoid having zero source as a global minimizer268

in such situations, the total weighted mismatch between model simulation269

and observations are normalized by the total weights when qij = qb
ij, as shown270
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in Equation 5.271

F =
1

2

M∑

i=1

N∑

j=1

(qij − qb
ij)

2

σ2
ij

+
1

2

M∑

m=1

(ch
m − co

m)2

ǫ2
m

×

∑M

m=1
1

ǫb
m

2

∑M

m=1
1

ǫ2m

+
csm

2
·

N−1∑

i=2

[
(qi−1,j − qb

i−1,j) − 2 · (qij − qb
ij) + (qi+1,j − qb

i+1,j)

qc

]2 (5)

Figure 3 shows that the cost function has the minimum at q=67.3 kg/hr272

after normalization. Note that the dramatic difference of the cost func-273

tion magnitude before and after the normalization is due to the extreme274

small value of
∑

m=1
1

ǫb
m

2 calculated at qb = 0. A constant small number275

0.001 pg/m3 is added to denominators co
m and ch

m to avoid dividing by zero276

when (ǫ
ln(c)
m )2 is calculated as defined in Equation 4. Tables 6 and 7 show the277

emission strength estimates after cost function normalization with different278

fh and ah, while keeping f o = 20%, ao =20 pg/m3, using concentrations279

and logarithm concentrations as metric variables, respectively. Note that280

fo = 20% was chosen for the cases listed in Table 7, while fo = 10% was281

chosen in Figure 3 to illustrate the potential problem. How estimate changes282

with fh and ah are similar to those in Tables 4 and 5. The estimates are283

generally closer to the actual release than those obtained without the cost284

function normalization.285

When using concentrations as metric variables, the emission strength esti-286

mates with fh = 50% are 64.7, 64.7, and 65.3 kg/hr for ah=10, 20, 50 pg/m3,287

respectively. They are all within 5% of the actual release. However, fh less288

than or equal to 20% results in significant underestimation. When using log-289

arithm concentrations as metric variables, the source term estimates are not290

very sensitive to fh and ah values and the results listed in Table 5 are all291

withing 20% of the actual release. Among those estimates, 67.3 kg/hr when292

fh = 10% and ah=10 pg/m3 is almost identical to the actual release.293

3.4. Ensemble294

Ngan and Stein [34] simulated CAPTEX releases using a variety of plan-295

etary boundary layer (PBL) schemes. In their configuration, WRF version296

3.5.1 was used with 27-km grid spacing and 33 vertical layers. North Amer-297

ican Regional Reanalysis (NARR) [32] data set was used for the initial con-298

ditions and lateral boundary conditions. The WRF model was initialized299
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m )2 is defined as in

Equation4 before and after cost function normalization, with fh = 0, ah =50 pg/m3,
fo = 10%, ao =20 pg/m3.
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Table 6: Emission strength of release 2 that minimizes normalized F defined in Equation 3
for different fh and ah. Concentration is taken as the metric variable. ǫ2 = (fo

× co +
ao)2 + (fh

× ch + ah)2. fo = 20%, ao =20 pg/m3.

Emission (kg/hr) ah =10 pg/m3 ah =20 pg/m3 ah =50 pg/m3

fh = 0 7.7 9.1 13.6
fh = 10% 10.9 15.1 26.4
fh = 20% 32.9 35.6 41.3
fh = 50% 64.7 64.7 65.3

Table 7: Emission strength of release 2 that minimizes normalized F defined in Equation 3
for different fh and ah. Logarithm concentration is taken as the metric variable. ǫ2 =
(fo

× co + ao)2 + (fh
× ch + ah)2. fo = 20%, ao =20 pg/m3.

Emission (kg/hr) ah =10 pg/m3 ah =20 pg/m3 ah =50 pg/m3

fh = 0 69.3 64.0 62.1
fh = 10% 67.3 63.4 60.9
fh = 20% 65.3 61.5 59.1
fh = 50% 61.5 58.0 55.1

every day at 0600 UTC, and the first 18 hours of spin-up time in the 42-300

hour simulation were discarded. The PBL schemes used to create the WRF301

ensemble were the Yonsei University [25, YSU]), Mellor-Yamada-Janjic [27,302

MYJ], Quasi-Normal Scale Elimination [37, QNSE], MYNN 2.5 level TKE303

[33, MYNN], ACM2 [38, ACM2], Bougeault and Lacarrere [7, BouLac], Uni-304

versity of Washington [8, UW], Total energy mass flux [2, TEMF], and Gre-305

nier Bretherton MaCaa [21, GBM] schemes. Nine simulations were conducted306

with the PBL schemes and their associated surface layer schemes, except for307

the YSU, BouLac, UW, and GBM cases in which the MM5 Monin-Obukhov308

surface scheme was applied. The land-surface model was Noah land-surface309

model [11], except ACM2 case in which Pleim-Xiu land-surface model was310

used.311

An individual TCM is generated using each of the nine simulations. The312

nine TCMs can be used to estimate the emission strengths independently313

following the same procedure as described previously. Tables 8 and 9 show314

the 3rd (25th percentile), 5th (median), and 7th (75th percentile) emission315

strength of the nine simulations of release 2 that minimizes the normalized F316
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defined in Equation 3 with different fh and ah, while keeping f o = 20%, ao
317

=20 pg/m3, using concentrations and logarithm concentration as metric vari-318

able, respectively. The 25th percentile and 75th percentile values are mostly319

within 5% of the median estimates. While the median estimates show the320

same trends with fh and ah as the results in Tables 6 and 7, the median321

estimates are significantly larger due to the meteorological model differences.322

Apparently the differences among the simulations with different PBL schemes323

are smaller than the differences between the ensemble simulations here and324

the simulation used in the earlier sections. This suggests that uncertainties325

of the emission strength are probably larger than the ranges indicated by326

the 25th and 75th percentile values. The results using logarithm concentra-327

tions as metric variables are quite robust with the listed model uncertainty328

parameters. However, the estimates using concentrations as metric variables329

are very sensitive with fh and ah. This is consistent with results shown in330

Section 3.2.331

Instead of using each individual TCM generated from nine simulations332

independently, the nine TCMs can be combined into one matrix by taking333

the median or average of transfer coefficients. The combined TCM can then334

be used to estimate the source terms and the results are listed in Tables 10335

and 11. It is found that the emission estimate using the median transfer336

coefficients of the nine TCMs are very close to the median of the nine esti-337

mates using the nine simulations individually. For the cases with logarithm338

concentrations as metric variables, the emission estimates using the median339

value of the nine TCMs are all within 3.1% of that using the median value340

of the nine TCMs. For the cases with concentrations as metric variables, the341

average relative differences are 6.4%, with the maximum relative difference342

being 10.8% when fh = 10% and ah=50 pg/m3. Combining the TCMs by343

taking the median value generates slightly better results than combining the344

TCMs by taking the average value does.345

Similar to what was found in earlier sections and also in Chai et al. [10],346

the cases having logarithm concentrations as metric variables generally yield347

better results than those having concentrations as metric variables. It is348

probably due to the large range of the concentrations. When having con-349

centrations as metric variables, certain model uncertainty parameters yield350

good source terms, but the estimates are quite sensitive to the choices of the351

model uncertainty parameters. However, it is not easy to find such model352

uncertainty parameters that would yield satisfactory results for applications353

when the actual releases are indeed unknown. The results here and in the354
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previous sections show that the estimates when having logarithm concentra-355

tions as metric variables are quite robust for a reasonable range of model356

uncertainty parameters. For these two reasons, logarithm concentrations are357

chosen as metric variables for the later tests.358

Table 8: The 3rd (25th percentile), 5th (median), and 7th (75th percentile) emission
strength of nine simulations of release 2 that minimizes the normalized F defined in
Equation 3 Concentration is taken as the metric variable. ǫ2 = (fo

× co + ao)2 + (fh
×

ch + ah)2. fo = 20%, ao =20 pg/m3.

Emission (kg/hr) ah =10 pg/m3 ah =20 pg/m3 ah =50 pg/m3

fh = 0 6.0, 7.0, 7.2 7.4, 8.8, 8.8 13.4, 15.1, 15.3
fh = 10% 20.0, 21.0, 21.9 23.9, 26.1, 27.2 33.2, 35.2, 37.4
fh = 20% 48.5, 49.9, 59.1 53.0, 54.6, 62.8 58.5, 62.8, 68.6
fh = 50% 191, 205, 274 186, 197, 258 158, 168, 207

Table 9: The 3rd (25th percentile), 5th (median), and 7th (75th percentile) emission
strength of nine simulations of release 2 that minimizes normalized F defined in Equation 3
for different fh and ah. Logarithm concentration is taken as the metric variable. ǫ2 =
(fo

× co + ao)2 + (fh
× ch + ah)2. fo = 20%, ao =20 pg/m3.

Emission (kg/hr) ah =10 pg/m3 ah =20 pg/m3 ah =50 pg/m3

fh = 0 102, 106, 113 93.4, 100, 105 83.8, 88.9, 97.2
fh = 10% 97.2, 102, 108 88.9, 96.3, 101 80.5, 85.4, 94.4
fh = 20% 93.4, 98.2, 105 86.3, 92.5, 98.2 78.1, 82.9, 91.6
fh = 50% 88.9, 93.4, 101 82.9, 88.0, 94.4 75.8, 81.3, 87.2

3.5. Source location and other releases359

In addition to the source strength, the source location and its temporal360

variation can be retrieved with adequate accuracy using the HYSPLIT in-361

verse system described here if there are sufficient observational information362

available. For instance, Chai et al. [10] estimated 99 6-hr emission rates of363

the radionuclide Cesium-137 from the Fukushima nuclear accident using 1296364

daily average air concentration measured at 115 stations around the globe.365

Here the system’s capability to locate a single source location will be tested366

using a straightforward approach. The release time is assumed known, but367
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Table 10: Emission strength estimates by using average and median value of nine simu-
lations for release 2. The cost function is normalized F as in Equation 3. Concentration
is taken as the metric variable. ǫ2 = (fo

× co + ao)2 + (fh
× ch + ah)2. fo = 20%, ao =20

pg/m3.

Emission (kg/hr) ah =10 pg/m3 ah =20 pg/m3 ah =50 pg/m3

fh = 0 7.2, 7.5 8.9, 9.1 15.6, 15.9
fh = 10% 22.3, 23.4 22.2, 28.0 37.0, 37.0
fh = 20% 55.1, 53.0 59.7, 58.0 66.6, 64.7
fh = 50% 213, 227 205, 213 178, 177

Table 11: Emission strength estimates by using average and median value of nine sim-
ulations for release 2. The cost function is normalized F as in Equation 3. Logarithm
concentration is taken as the metric variable. ǫ2 = (fo

× co + ao)2 + (fh
× ch + ah)2.

fo = 20%, ao =20 pg/m3.

Emission (kg/hr) ah =10 pg/m3 ah =20 pg/m3 ah =50 pg/m3

fh = 0 115, 108 105, 100 95.3, 90.7
fh = 10% 110, 103 100, 95.3 91.6, 87.2
fh = 20% 105, 100 97.2, 92.5 88.9, 85.4
fh = 50% 100, 96.3 93.4, 88.9 86.3, 82.1

its location and strength are left to be determined. A region of suspect is first368

gridded at certain spatial resolution to form a limited number of candidate369

source locations. An optimal strength is then found at each candidate source370

location following the method described earlier. The location that results371

in the best match between the predicted and the observed concentrations is372

considered as the likely source location.373

In the following tests, a 11×11 grid with 0.2◦ resolution in both longi-374

tude and latitude directions is used to generate 121 candidate source loca-375

tions. They are centered at (40.0◦N, 84.5◦W) for releases 1-4, and centered376

at (46.6◦N, 80.8◦W) for releases 5 and 7. Using the normalized F defined377

in Equation 3 and assuming f o = 20%, ao =20 pg/m3, fh = 20%, ah =20378

pg/m3, an minimal cost function associated with an optimal release strength379

can be found at each location. Figure 4 shows the 121 candidate locations380

and their respective minimal cost function values for release 2. No candidate381

locations are chosen to collocate with the actual source location which will382
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be unknown for the future applications that need to locate the sources. A383

global minimal point is found at (39.8◦N, 84.5◦), with F = 3.14 achieved384

when q=48.5 kg/hr. This grid point is taken as the estimated source loca-385

tion and it is 26.4 km away from the actual release site (39.90◦N, 84.22◦W).386

The neighboring location (39.8◦N, 84.3◦W) which is the closest to the ac-387

tual release site yields a slightly larger F = 3.17 with a release rate of 60.9388

kg/hr. If the exact source location is known as in the tests presented earlier,389

the cost function F reaches 1.59 at its minimal point when q = 61.5 kg/hr.390

Apparently, compared with those cases when the release strength is the only391

unknown, finding both the source location and its strength with the same392

amount of observations is expected to be more difficult. Note that the smaller393

normalized F values in Figure 3 are for a case with different observation and394

model uncertainty parameters, where f o = 10%, ao =20 pg/m3, fh = 0%,395

and ah =50 pg/m3.396

Table 12 lists the source location and strength estimations for all releases397

following the same procedure as release 2 described here, where the uncer-398

tainty parameters are f o = 20%, ao =20 pg/m3, fh = 20%, and ah =20399

pg/m3. Releases 1 and 4 have the minimal cost function Fmin occur at the400

north boundary and the west boundary, respectively. In such scenarios, it401

might be necessary to expand the suspected source region for the future402

applications to find the source locations. However, if source locations are403

known to reside in the suspected region, the sources can definitely be near404

the boundaries. In such cases, the point with Fmin should be considered as405

the estimated source location. Releases 3, 5, and 7 have its Fmin occurred at406

inner grid points, similar to release 2 shown in Figure 4. None of the closest407

candidate source locations yield the best match between model simulation408

and observations quantified by the cost function F . Among the six releases,409

the estimated source location for release 2 is the closest to its actual release410

site, with a distance of 26.4 km.411

The release rates obtained along with the likely source locations are un-412

derestimated by a factor of 3 for release 1, and overestimated by a factor413

of 3 for releases 4 and 7, although the estimates for releases 2, 3, and 5 are414

much better, with relative errors as −27.6%, −5.4%, and 21.5%, respectively.415

Table 12 also lists the release rates estimated with the exact source location416

assumed known. These estimates for all releases are within a factor of two417

compared with the actual release rates and the largest relative error is 53.3%418

for release 1. Either with the source location known or unknown, release 2419

has the best emission estimates among the six releases, because the HYS-420

20



PLIT forward model also has the best performance for the same release [23].421

The significant model errors when simulating the transport and dispersion422

even with the exact source terms are mostly caused by the meteorological423

uncertainties while the HYSPLIT physical schemes and parameters, as well424

as the numerical discretization also contribute.425

The meteorological field and the observations are the two major inputs426

to the current inverse modeling. As discussed above, better model perfor-427

mance of release 2 helps to lead to better inverse results than the other428

releases. However, it is impossible to eliminate the model uncertainties. In429

practice, ensemble runs can be used to quantify the uncertainties and reduce430

the model errors by taking the average or median values of the ensemble431

runs. On the other hand, increasing the number of observations is effective432

to improve the inverse modeling results and reduce the result uncertainty.433

In principle, when the release strength is the only value to be determined,434

each measurement within the predicted plume can provide an independent435

estimate. However, relying on a single observation to estimate the strength436

is problematic since a particular model output can be very different from437

the observation and thus leading to an erroneous estimation of the source438

strength when used in isolation. For instance, although the HYSPLIT pre-439

dictions of the release 2 with exact source terms are very good, compared440

with individual measurements, it has severe underestimation, 0.77 pg/m3
441

predicted versus 686 pg/m3 measured, as well as significant overestimation,442

2033 pg/m3 predicted versus 31.2 pg/m3 measured. Therefore, similar to a443

regression technique, increasing the sampling number can improve the final444

results, as shown by the very good source term estimation for release 2 when445

using all the available measurements. Also note that the samples outside446

predicted plumes do not contribute to the inverse modeling. Table 1 lists the447

total measurement counts for each release, but the number of measurements448

actually contributing to the inverse modeling are those inside the HYSPLIT449

plumes, including those with zero or background concentrations. The num-450

ber of such effective measurements inside the plumes generated by HYSPLIT451

with unit emission rate from the exact source location and time period are452

reduced to 148, 237, 211, 68, 46, and 53, for releases 1–5, and 7, respectively.453

The largest number of effective measurements, 237, of release 2, also indi-454

cates the best performance of the HYSPLIT simulation among those of the455

six releases. The effective measurements will change when source location or456

timing is changed. The measurements that is not active in determining the457

source strength with known source location and timing may be effective to458
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locate the source locations.459

Table 12: The source location (latitude, longitude) and release rate qmin identified by
the minimal normalized cost function Fmin for each CAPTEX release. A total of 121
candidate locations are prescribed with 0.2◦ resolution in both longitude and latitude
directions, centered at (40.0◦N, 84.5◦W) for releases 1-4, and at (46.6◦N, 80.8◦W) for
releases 5 and 7. ∆ is the distance between the point with Fmin and the actual release
site. q′ is the estimated release rate by assuming that the actual release location is known.
For all the cases, fo = 20%, ao =20 pg/m3, fh = 20%, and ah =20 pg/m3.

Source location (latitude, longitude) ∆(km) Release rate (kg/hr)
# Actual Estimated Actual qmin q′

1 39.80◦, -84.05◦ 41.0◦,-83.9◦ 134.2 69.3 23.9 106.3
2 39.90◦, -84.22◦ 39.8◦,-84.5◦ 26.4 67.0 48.5 61.5
3 39.90◦, -84.22◦ 40.8◦,-85.3◦ 135.8 67.0 63.4 41.7
4 39.90◦, -84.22◦ 40.2◦,-85.5◦ 114.1 66.3 185.7 75.1
5 46.62◦, -80.78◦ 46.2◦,-81.0◦ 49.7 60.0 72.9 42.6
7 46.62◦, -80.78◦ 47.4◦,-81.2◦ 92.5 61.0 201.0 66.0

4. Summary460

An HYSPLIT inverse system developed to estimate the source term pa-461

rameters was evaluated using the Cross Appalachian Tracer Experiment462

(CAPTEX) data collected from six controlled releases. In the HYSPLIT463

inverse system, a cost function is used to measure the differences between464

model predictions and observations weighted by the observational uncertain-465

ties. Inverse modeling tests with various observational uncertainties show466

that using concentration differences results in severe underestimation while467

using logarithm concentrations differences results in overestimation. Intro-468

ducing model uncertainty terms improves inverse results for both choices of469

the metric variables in the cost function. It is also found that cost function470

normalization can avoid spurious minimal source terms when using logarithm471

concentrations as metric variables. The inverse tests show that having loga-472

rithm concentrations as metric variables generally yields better results than473

having concentrations as metric variables. The estimates having logarithm474

concentrations as metric variables are robust for a reasonable range of model475

uncertainty parameters. Such conclusions are further confirmed with nine476
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Figure 4: Distribution of 121 candidate source locations for release 2. The minimal cost
function at each location associated with an optimal release strength is indicated by color.
The cost function is calculated using Equation 3 where fo = 20%, ao =20 pg/m3, fh =
20%, and ah =20 pg/m3. The actual source location , Dayton, Ohio, U.S., is shown as a
red diamond.
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ensemble runs where meteorological fields were generated using a different477

version of WRF meteorological model with varying PBL schemes.478

With a fixed set of observational and model uncertainty parameters, the479

inverse method with logarithm concentrations as metric variables is then480

applied to all the six releases. The emission rates are well recovered with the481

largest relative error as 53.3% for release 1. The system is later tested for its482

capability to locate a single source location as well as its source strength. The483

location and strength that result in the best match between the predicted484

and the observed concentrations are considered as the inverse results. The485

estimated location is close to the actual release site for release 2 of which the486

forward HYSPLIT model has the best performance. The strength estimation487

is within a factor of 3 for all releases.488
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